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Motivation

• Product form for steady-state distribution.

• Generalization of many results for Stochastic Petri Nets, Interactive

Markov Chain, Modulated queues, Modulated Networks of Queues . . .

• In Continuous-Time (presented in ValueTools07)

• In Discrete-Time (new)
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Stochastic Automata Networks

• N finite automata. One automaton is used to model one component.

• The state space is included into the Cartesian product of the state

space of the automata.

• The links in the automata carry information:

– rate: fixed or function

– local or synchronization
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Continuous Time SANs

• Exponential duration (i.e. we obtain a CTMC chain)

• The transition rate matrix is given by:

Q =
⊕

g

N

i=1

Qi
l +

∑
s

⊗
g

N

i=1

Q(i)
s + D

where D is a diagonal matrix (for normalization),
⊕

g and
⊗

g are the

generalized tensor sum and the generalized tensor product and Q
(i)
l

and Q
(i)
s are matrices describing the local transitions and transitions

due to synchronization s on automaton i.

• the state of the chain is !k where kl is the state of automaton l.
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Functional Dependcy Graph

• Functional Dependency Graph: directed graph (V, E)

• Node = Automaton.

• Directed edges (A1, A2): automaton A1 uses the state of A2 in some

functions to define rates or probabilities.

• The numerical algorithm developped by Plateau, Stewart, and

Fernandes takes into account some properties of the Functional

Dependency Graph.
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Discrete Time SANs

• Constant duration (=1) (i.e. we obtain a DTMC chain)

• The transition probability matrix is given by:

P =
⊗

g

N

i=1

P i
l +

∑
s

⊗
g

N

i=1

P (i)
s + D

Same type of constructions but tensor product instead of tensor sum.
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Here for Contiunous-Time

• Infinite State Space.

• Local Events.

• Functions to model the interactions between components.

• An easy model to represent multidimendional Markov chains:

– without synchronized transition in continuous time: only one

component change during a transition.

– with transition rates which are functions of the other components.

• Q(l)[kl, i](!k,!k + (l, i)) : transition rate matrix for automaton l. The

state of the automaton jumps from kl to i. Due to this local jump, the

global state changes from !k to !k + (l, i). The rate or probability may

depend of the global state (i.e. functionnal rate).
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Simple Systems

• Continuous: Time Q =
⊕

g
N

i=1
Qi

l

and Qi
l is a functional transition rate matrix.

• Discrete Time: P =
⊗

g
N

i=1
P i

l

and P i
l is a functional transition matrix
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Example

• Consider a SAN with two automata A1 and A2.

• Both have a very simple state space: {0, 1}

• The transitions in A1 have a fixed rate l1 for the transition from 0 to 1

and l2 for the transition from 1 to 0.

• Automaton A2 has two functional transitions: the rate from 0 to 1 has

a functional rate f1 and the reverse transitions has functional rate f2.

Both functions use the state of automaton A1 as an argument

(denoted as x1).

• f1(x1) = mb + m(1 − b)1x1=0 and f2(x1) = m1 + m21x1=0.
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Figure 1: Stochastic Automata Network
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Example
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Figure 2: Markov chain
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Generalized Tensor Product and Sum

• Ordinary The tensor product C = A ⊗ B is defined by assigning the

element of C that is in the (i2, j2) position of block (i1, j1), the value

ai1j1bi2j2 . We shall write this as

c{(i1,j1);(i2,j2)} = ai1j1bi2j2 .

• Generalized Tensor Product: Matrices of functions whose argumesnt

are the states of the other components (ie the index of the matrix).

c{(i1,j1);(i2,j2)} = ai1j1(i2)bi2j2(i1),

• As usual the sum is defined using the product:

D = A(B)⊕g B(A) ⇔ D = A(B)⊗g IdB + IdA ⊕g B(A),

ANR Project Blanc SMS and SetIn CheckBound [12/34]



CK equation

Pr(!k)


 n∑

l=1

∑
i !=kl

Q(l)[kl, i](!k,!k + (l, i))


 =

n∑
l=1

∑
i !=kl

Q(l)[i, kl](!k + (l, i),!k)Pr(!k + (l, i)).

(1)
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Main Idea

• As the state space is discrete, functions can be replaced by an index.

• Definition 1 Let l be an automaton index, we consider all the

functions in matrix Q(l) and we evaluate them for all state !k when the

transition from !k to !k + (l, i) takes place. Such a matrix will be

denoted by L(l,m(!k)) where m(!k) is an index. The set of matrices

L(l,m(!k)) will be denoted by F(l).
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Definition

• Definition 2 Let α be a probability distribution. We note by S(α) the

set of transition rate matrices M such that αM = 0 (i.e. α is in the

the kernel of all matrices in S(α)).

• Property 1 Interesting properties of S(α):

1. 0 (the matrix whose elements are all zero) is in S(α)

2. aM1 is in S(α). for all matrices M1 in S(α) and a in R+.

3. aM1 + bM2 is in S(α) for all matrices M1 and M2 in S(α) and

a, b in R+ such that a + b = 1.
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Main Theorem

• Theorem 1 Consider a SAN with functions but without

synchronizations. Assume that the steady state exists. If for each

automaton l there exists a probability distribution πl such that all the

matrices in F(l) are in S(πl), then the SAN has a product form steady

state distribution such that:

Pr(x0, .., xn) = Cπ1(x1) . . .πl(xl)πn(xn).

• The proof is based on the resolution of the Chapman-Kolmogorov

equation at steady-state.
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Pr(!k)


 n∑

l=1

∑
i !=kl

L(l,m(!k))[kl, i]


 =

n∑
l=1

∑
i !=kl

L(l,m(!k))[i, kl]Pr(!k + (l, i)) .

(2)

Corollary 1 Consider the previous example. Matrices M0 and M1 have

the same kernel if b = m1
m1+m2 . If this condition is satisfied, the steady-state

distribution of the SAN has product form:

π(x1, x2) = C

(
l1

l2

)x1 (
m

m1 + m2

)x2

.

ANR Project Blanc SMS and SetIn CheckBound [17/34]

Previous results

• Plateau’s first theorem on product form for SAN

• Boucherie’s first theorem on competin Markov chains.

• Verchere’s theorem on modulated Markov Chains

• Partial Reversibility

• They are all corollaries of our main theorem.
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Plateau’s first theorem on Product Form SAN

• SAN with functions.

• The transition rate matrix of automaton l is the product of a function

of !k except component l (fl(!k)) by an usual transition rate matrix.

• Q(l)[i, kl](!k + (l, i),!k) = fl(!k)Q(l)[i, kl]

• All these matrices have the same dominant eigenvector.

ANR Project Blanc SMS and SetIn CheckBound [19/34]

Boucherie’s first theorem on competing Markov chains

• Associated to Petri nets.

• A collection of Markov chains and a product process with restriction

on the state space.

• Competition over ressources.

• Unformally: if a ressource is owned by component (i.e. a chain),

transitions from some other chains (i.e. the competing ones) are

removed.
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Example

• Two chains X1 and X2 both with states {0, 1, 2, 3} competing over

one resource.

• Symmetrical rules.

• The resource is owned by a chain when it is in state 2 or 3.

• It is released when the chain jumps from state 3 to 1.

• Thus states in {2, 3}× {2, 3} are forbidden.

• When process X1 is in state 2 or 3 process X2 is stopped. If process

X1 is in state 0 or 1, process X2 can move.
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Graph of the example
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Figure 3: Two Markov chains in competition
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Transitions of a competing Markov chain

• if states !k and !k′ differ by more than 1 components, the transition rate

is 0. (the transition matrix is a tensor sum of some matrices).

• from state !k to state !k + (l, i) the transition is the transition rate from

kl to i in chain l multiplied by an indicator function.

• This function is equal to zero when there exists a resource r owned by

another chain which competes with l. (the transition rate matrices are

the original matrices of the chains multiplied by a function of the

states which takes value in {0, 1}.

• This is a simple corollary of Plateau’s first theorem where the

functions take value in {0, 1}.
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Modulated network of queues

• One automata to represent the phase and one to represent the network

of queues.

• Thus the synchronized transition between queues are local to the

second automata.

• The transitions of the queues (not only the rate) may depend of the

state of the phase.

• Verchère’s theorem: if the steady-state distribution of the queueing

network is always the same for all state of the phase, then the global

system has a product form steady-state distribution.
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Not that simple

• A two state phase.

• In phase 1, we have a Jackson network (transition (-1,+1)).

• In phase 2, a G-network with positive customers (transition (-1,+1)),

triggers (transition (-1,-1,+1)) and negative customers (transition

(-1,-1)).

• Both networks do not have the same transitions (because of negative

customers and triggers).

• But if the rates are carefully chosen, they have the same geometric

steady-state distribution

• Product-form.

ANR Project Blanc SMS and SetIn CheckBound [25/34]

Relations with the generalized tensor sum

• Hidden in the proof, this simple property...

• Property 2 Let A(B) and B(A) be arbitrary functional transition

rate matrices. Assume that w is in the kernel of B(y) for every y and

that w is positive. Similarly assume that there exists a positive vector v

which is in the kernel of A(x) for all x. Then we have:

(v ⊗ w) × (A(B)⊕g B(A)) = 0.

• Very simple proof (algebra).
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Return to Discrete-Time

• Infinite State Space.

• Local Events.

• Functions to model the interactions between components.

• Several components change during a transition.

• With transition rates which are functions of the other components.
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Relations with the generalized tensor product

• It is harder in discrete-time to have such a result

• Property 3 Let B be a positive matrix, let A(B) be a matrix whose

elements are functions of the index of B. Assume that w is an

eigenvector of B with eigenvalue λ. Assume that for all states s of B,

A(s) has an eigenvector v associated to eigenvalue µ. Assume that both

µ and v do not depend of s. Then we have:

(v ⊗ w) × (A(B)⊗g B) = λµ (v ⊗ w) .

• Proof: simple algebra.

• Easy Generalization to an arbitrary number of automata....

• But Functional Dependency Graph = DAG...
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Main result for Discrete Time

Theorem 2 Consider a collection of functional stochastic matrices such

that:

• The functional dependency graph is a Directed Acyclic Graph.

• For every matrix l there exists a positive vector πl such that for every

matrix index m, πl is in the kernel of matrix (Q(l,m) − Id)

• The Markov chain associated to the composition of these functional

matrices is ergodic.

Then the steady-state distribution has product form.
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Competing Markov chains in Discrete Time: Simple

• Chain X1 and X2 compete over one resource,

• if X1 has the resource, all the transitions of chain 2 are cancelled

except self loops.

• if X1 does not own the resource, X2 evolves independently.

• X2 cannot block X1.

• When X2 owns the resource, X1 can move and if it takes the resource

X2 is now blocked.
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Competition in CT/DT
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Differences between CT and DT

• Strict priority (with preemption to take the resource) in DT.

• Race in CT.

• Priority implies (Functional Dependency graph = DAG)

• Several movements in DT, only one in CT.

• Cancellation of states in CT, not always in DT.

• Product form in both cases.

ANR Project Blanc SMS and SetIn CheckBound [32/34]



A more complex model of Competition

• H1’: The resources are distributed among the Xi according to the

index beginning with X1.

• H2’: At the beginning R resources are available.

• H3’: The resources are distributed at every time slot.

• H4’: If r resources are available and the state of Xi is in Bk
i and r > 0,

the transition matrix of Xi is (Mi)min(r,k) and max(0, r − k) resources

are available for Xi+1.

• H5’: When no resources are available for Xi, it is blocked. Its

transition matrix is IdMi
.

Theorem 3 Consider a collection of N chains X1, . . . , XN in competition

over a set of R equivalent resources. Suppose that assumptions H1’ to H5’

are satisfied. Assume that the Markov chain of the DTMC modeling the

competition is ergodic, then the steady-state distribution has product form.
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Conclusion

• A simple generalization of many existing results.

• New results as well (many competition rules with product form).

• Generalization to SAN with functions and synchronizations.

• Some results exist for SAN with synchronizations but without

functions (Domino)
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